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\E:E:.E.. Torest types i the bor al ccosysiem is an inicyrated part of any modeling
exercise of biogeophysical processes characterizing the interaction of jorest with the
atmosphere. In his paper e epor the resulis of the land cover classification of the
SAR deta acquired during the BOREAS (BOReol Feos ystcm Atiospheric Study) intensive
Teld campaigns over the modcling sub grid of the southern study area in Savkorchewan,
Canada. A Bayesian-maxumon-a-posieriori classificr has been applicd on the NASALIP]

AIRSAR Dinages covering the region durivg the peak of the growing scason i July

1994 The approach is supervised in the sense that o ombination of field data and
cxsting land covrmaps are used 1o develop training arcas Jor the desired classes, The
inages a - guired were Just radiomctrically and abisolurely calibrated, the incidence angle
cliect in alrborne images was corr cted 1o an acceptable accuracy, and the images wer e
used ina mosaic form and geocoded and seorclerenced with an existing land cover nap
Jor validation prrposes. The results shove that SAR inages can be classified into
dominant jorest types such as jack pine, black spruce, trewbling aspen, clearing, open
water , and three categories of mived stands with betier than 904 acciwracy. The uni-
species Stands such as jack pine and black spruce are separated witle Q8% acciracy | but
the acciwracy of mixed coniferous and deciduons sinds suffers frome confusing: Jactons
SUCh as varying species composition, surface moisii ¢ ane nuderstory effects. To satisfy
the requirements of process models, the b of cover types was reduced from & 1003
seneral classes of coniferwer, contfer-dry, pived deciduons, distirbed, and Openwate!
Reduction o lass s improved the overall accuracy of the classification over the entire

regiion from 7 /% 10 924




NTRODUC TON

One of he major challenges of developing Far e Systems Process miodels both
ploba and cpiona scales 18 the accurate representation of the terestr ¢ vege aton.
Ihese process models work aa vinicety o spatial scales ranging from several incters to
kilomcters, Depending on the application of the processes and their scales, the defimiton
of categorics of vegetation ypes may chiange . For exanple, for land-atimosphere models

such as BATS, cighteen pencral Tand cove  classific tons are defined which are often

Tom maps, atdases and national databases (Dickenson, 1994). s procedue
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heteropencous land suifaces, e sca ¢ process models are used o nmprove
understanding, of biogcochemical and physiological 1elationships. The availabal ty of
high 1esolution land cover aaps can 1 nprove the paramcter.za 1cn ol fandscape o
vnctionally different strata for both global and 1egional scale awodelivy Cunently, there
a ¢ severs approaches under investipn ion for statistically aggrepate the high resolucn
tmaps de ived fromemote sensing techniques to o desired process model gaid scale [Hall
cta 1994]  ‘These techniques are primanily ocused on exploiting optical raimote
sensing data such as AVHRR tnd andsat [Se tasctal, 9947 wnd ctal, 99]
As o complement to optical remote sensing techmiques, Tand cover maeps derived

fonrmeltipolanizaton, mmultfrequency sy thete aperin ¢ adar (SAR) systems present an

huporee: 100l 1o terrestiial ccologists and process modelers, Independence of SAR daty

M solar hadianee and cloud cover is one signi wcant rcason for using this technmgue o1
and cover classification, especially in norithern latitnde of boreal forest and tropic
ainforest where the acquisition of optical data is hindered by frequent cloud cover and
ne smoke, noaddition, the sensitivity of the tadi signal to moisture content and
structwa properties of vegetation may scpaate forest types sariiculanly when optical
sensors are saturated over dense vegctation. Several studies, using o varicty of
classification approaches, have used SAR mmages for ind cover type classification in
fores regaons [Rignot ¢t al, 1994 Ranson and Sun, 9940 Dobson et al., 994, Cinmno ot
al., 19806, The application of these highresoluti noaaps in process models 1as ot been
thoroughly examined. Studics such as i Bonan (1993) that the SAR denved land cover
map over the boreal forest of nterion Alaska was used to iimprove the estimation of forest
assimilation are rare!

Before we delve v her into the discussion of the methodolopy and he resolis, ot
is imporant to articolate the under ying 1ationasle for this study. Fhe classification of the
land cover areused to addiess the specific requirements of the 3OR GAS modeling

activitics. In othar words sepatatin functionally tmpor ant ant cover types 10



modcling the exchange of tace gases between the land smface and the atmosphere 1s the
wtimate poal of _he study. The arca has been under intensive study durmg, the 3ORAS
(Rorcal Feosystem Atioosphere Study) project for its imporiant tele i biogeochenme:

cycles between land aud aunosphere @ noribern Tatitude [Sellers o A, 1995 The Land
cover types in this region can be characterized by only a few dominan tiee species. o
exatnple, the separability of conifer and deciduous stands and the dry and wet conditions
in this 1egion are imporiant for estimating, the 1ates of photosynthesis, respiration, carbon
assiiilation and nittogen concentration Lacrcfore, he process  classification using
SAR fmagery is fust to Hustate the capability of the instroment toadently these classes
and sccondly to show the spatial pattern of these classes over a region used for ccosystem
processing nodels In his study we discoss the application of SAR data for mapping of
forest types io the BOR GAS study amea A supervised classification approach usimg, a
maximien-a-posteriori Bayesiar classificr 1s ap pic s on the threes cquencey poln meliic

1. A RSAR data toidenti y 8 classes Classification accuracies are computee based

on ast the arcas used for taining the classi e, then over severa homogencous sites
examined during the ficld observation, and finally by comparing, the 1esults with a digital

vegetation map asscinbled fromnfraed acrial photo interpretation perfonmed m 1984

BOR ‘AS EX HR M iN]

The Boreal fcosystem- Atmosphere S udy (BOREAS) 1s @ cooperative ficld
experiment integrating land suface climatology, topospheric chemistry, and tenestinal
ccology. In gencral, the experiment was designed 1o extend the findings of 111 ova
grass prairic to onc of the Barth's largest and complex biomes, the boreal forest, where
coniferous species dominate. The biome has upland forests, extensive wetlands, some
deciduous species, many lakes, and is a major storchouse of organic carbon, mostly in the
soil [BORVAS Scicnee Steerimg Conmittee, FOS, 19901, Among the major objectives of
the experiment, Improving, understanding of the processes that govern the exchange of
encipy, water, heat, carbon, and tace gasses between boreal forest ccosystem and
a mosphere, and developing and validating 1c sensing techuiques to ansfar

knowledge of these processes from focs toaregicnal scales are of great mpor ance  One
clevant scientific issuc is the sensitivity ol he boreal forest biome to changes nophysica
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and the species composition in the region has also a long e chinatological application.



Site Description:

The focus of this paper is the BOREAS southern study area (SSA) which covers
an arca about 130 kin in the cast- west divection and 90 ki from north to south (Fagure 1),
‘The southern boundary is located approximately 40 kin notth of the town of Prince
Albert, Saskatchewan, Canada. The SSA 1opography is gentle, with local clevations
ranging from 550-730 m. Sotls 1ange from gray wooded to degraded black and are
classified as brunisolic, gleysolic, chenozemic, luvisolic and organic soil orders, Glacial
deposits vary in thickness from 100- 1000 1m on the top of the Cretaccous Age bedrock.
The western part of the SSA is in the Prince Albernt National Park (PANP) and the castein
repron falls within and aound the Navrow Hills Provincial Forest

The SSA s near the southern Tt of the boreal forest and the tansition to natural
praivic grassland and agricultural lands occurs 15 ki to the southeast. The image data
discussed in this paper is located in the cast of PANP in the wiea of the Narow Thils
Provincial Park. The image area also coincides with the BOREAS modceling, goid (50 ki
x 50 km) used mainly for verifying remote sensing algoritinns and ccosystem modehing,
1esults. The vegetation in this arca is classified as mixed boreal forest. On well drained
and sandy soil the predominant species is jack pine (Minus banksiana). Poorly drained
sites suppori black sproce (Picea mariana). Mixed stands of aspen (Popudus tremuloids),
balsam poplar (Populus balsamifera) and white spruce (Picea glauca). 1.ocalized
logging for paper pulp and fence posts is conmmon along Thighway 106, 120 and Harding
Road (sce Fig. 1). The poorly draned arcas thioughout the study arca, bogs support
black spruce with tumwack (Larix laricina). The fen acas e composed mostly of
sedge (Carex spp.) vepctation with discontinuous cover of tamarack or swamp birch
(Bewla pronila). "The northe-cast portion of the study arca encompasses a portion of the
fishing lakes burn which occumrred in 1977 and 1978, Stands of small (<5 cin ) jack pine
1eprowth now cover most of the burn arcas.

Major land-cover types e adentificd according to the needs of the BOREAS
scientific apphications. These land-cover  types are chosen based on then dominant
specics, canopy closure, soil organic properties, and then roles in deternnning the physics
of the interaction of Tand surface and atmosphere. The land-cover categories consist of
dry conmfers (e.g. jack pine), wet conifers (g black spruce), deciduous (nemblhing
aspen), clear cut, open water (lakes and 1iver), brashland, ueed muskeg, mixed coniferous
and deciduous trees, and regrowth (c.g. young jack pine). Between sunmner of 1993 and
fall of 1994, forest stands of major land cover were sampled 10 measure tiee species
composition, stand geometry, biomass density, and several other forest canopy attiibutes.

The field data collection were performed by having several applications in mind, and we




available for all the flux ower and auxiliary sites. The flux tower sites ae mainly single
species stands.

In addition, there exits a digital vegcetation map of SSA that has been assembled
from 1:12,500 scale infrared aciial photography and field reconnaissance notes i 1984,
This vegetation map has been venified on the ground but no accuracies are provided. The
map consists of more 40 different classes, thatiegrouped to simplify the 1epresentation of
vegetation types for dominant classes (Figure 2). Since this map was acquited in 1984, 1t
is not entitely accuate today. The map docs not reflect 1ecent changes due to tiee
logging, 1egrowth and tansformation of ueed muskeg o predominantly black spruce

stands.

AIRSAR Data

The JPY. aitborne synthetic ap erture radar (AIRSAR) was flown aboardthe NA SA
DC-8 during all the intensive ficld ¢ unpaigns (11C) i summer of 1993, April 1994
duting, the thaw period of the boreal forest, and in sumner and fall of 1994, The
AIRSAR operatesatthiee frequency bounds, P-band (68 cnwavelength), 1 -band(24cm),
and C-band (5. 6 cm) with fully polarimetric capability. Theincidence angle of the radar
vanicdbetween approximately 20 and ()7, ‘P'IL" 1adardataused forland-cover
class ihcation were acquued in July 21,1994 a nd p rocessed in synoptic mode (50 km
swath). We have chosen this date to avoid possible criors in classification duc to the
partially frozen condition duting the thaw per 1od and leaf-off condition during the tan
scason. |l synoptic 1110( 1( ., stiipsofradar images arc p rocessed with fixed rada
parar neters alonig the swath and without the airaraft motion compensation. These images
often suffer fiom accumate calibration and radiomet ic conrection. 1 lowever, it isthe
appropriate mode for large arca mapping.  We have used images from sever al par allel
fight lines in @ mosaic mode to create louger area coverage ovel the modeling grid. The
calibration, radiometi 1¢ correction, and mosaic of the images were per for med in sever al

stepsas follows:

Image Calibration :

In this study we have made use of synoptic SAR images which were acquired
with parallel flight lines ina "race-tack” uajectory. ‘The synoptic images have larger
coverage (approxumately 50 ki) but only thice polarizatons. These images are often
processed for the purpose of surveying the area and are not absolutely calibiated. We

have processed a total of 15 synoptic images 1o cover all the bands of polatizations of the




AIRSAR system.  Calibiation of images are performed by using fully polarimetiic
calibrated frame images processed over a portion of the synoptic images.  Absolute
calibration constants were obtained by computing the ratios of backscattening, coefficients
fiom identical arcas from both images and applying the calibration constants to all

Synoptic image:

. When compared wi h frame images, the synoptic images were
absolutely calibrated with less than 0.1d - ¢r or for all polariza ion chanuels. The frame
images were calibrated both internally and externally using data collected over an array
of corner reflectors deployed over the Rosemond diy lake calibration site i California
before and after the AIRSAR campaign. After the absolute calibration, the images were

1esatpled to ground range to remove the distortions in the near tange and far 1ange

pixels.

Incidence Angle Correction:

One of the disadvantages of aitborne SAR data, when used for land-cover
classification, is the variation of the incidence angle along he 1ange lines acioss the
image (209-60°%). Conscquently, arcas with similar land-cover types produce differen
backscatter signatures if they are imaged at difterent mcidence angles and depending on
the scene characteristics, the varia ion of the Hackscatter signatuie along cach range line
may be different. These effects can cause inaccuracies in a consistent class separation
over the entite image. Coucction of he mage for cidence angle cffects, tharefore,
becomes a necessary but impossible task o accomplish exactly. "To have an optimal
correction for neidence angle effects, severa approaches have been suggested. For
example, Yueh et al, (1988) normalized the SAR data by he total power. This technique
climinated most of the incidence angle eftects but at the same time changed some of the
informatior i SAR backsca ter signatures. The resulting normalized 1mages were 1ot
able to discriminate all classes. Another method was proposed by Sader (1987) where
homogencous arcas of the same types were chosen along the 1ange line and the total
image was calibrated such that hese arcas had equal backscattering signatures. This
technique wil not work in areas with complex land-cover types. Rignot and Drinkwates
(1993) removed this effect n classifying sea ice types in aitborne imagery by fist

segmenting the 1mag

s along the 1ange line, perfonming ange dependes . clustering of the
image, regrouping the clusters and employing a supervised classification to produce self-
consistent classes across the image scene. However, thein technique requires hat simila
class types are represented nocach segmen of the image. Ovar complex land cover

types, sometimes, only a imited number of classes s presen over cach range
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causing difficulty in tegrouping he clusters and removiag the range dependent effects.
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Ransonand Sun, (1994) used ATI<SAI< images over forestedlandsuifaces, selected a
portion of cachimagpe line within sapwood arcas, calculated the mean and  standard
deviation of these. pixels, and discarded all pixels falling outside of # 2standard
deviations. The remaining pixels were used to estimate the mean values at cach image
row, then a linearregression was usedto estimate the calibrationtatio for cach hine, and
subsequently, theentircimage was calibiated using thescratios. When employing this
technique, it was found that the lincar regression method did not always compensate for
the inhomogencous scene charactenistics along the range line.

The synoptic images used in this study were corrected for incidence angle
variations with a slightly (iiffc.lent tcchnique tha n Ranson and Sun (1994). in this
approach | we plotted the incide nee an gle vanations forcachrang ¢ ling, then anonlinea
1egression in conjunction with a cubic spline smoothing algorithim was used to estimate
t he general behavior of the incidence angle variations along cach range line. ‘The
regression curve was then normalized by the imean backscattering cocfficient of the range
line and then used o correct for the incidence ang le effects of thatange line, The entire

mage was then corrected line by line.
Image Mosaic.

After calibr ationand incidence angle correction, the images from each frequency
band and polanzation were used in tandem 10 pencrate @ mosaic image over alimost the
cntite modeling sub-grid. Figuie 3 shows a color composite of the mosaic image at P-
band (ed: J'-]] 1], green: P-11V, bluc: P-VV). Since the images were acquited from flight
lines with the same heading, they also had an arca of overlap with adjacent fmages. A
linear feathering technique was then employed to et nove the tonal inconsisten cies that
existed at the arcas of overlap. Insome arcas where incidenice angle ¢ ffects were not
optimally corrected, the feather ing technique guaranteed fur ther sioothing at the edges
of images. If the overlapping regions werencathe lakes where thae was a dramatic
change ill the radar back scattersignature, incidence angle ¢ ffects could not be totally

1 moved and the ed ge effects were still obvious in the mosaic image.
CLASSIFICATIONMI11101X)1.0GY

When designing a classificr, itis important to define the mathematical basis of the
classificr and at the same time o distinguish between the supervised and unsupervised

lcarning procedures within the classificr. Tere, we make use of a maximum-a-posteriori




(MAP) Bayesian classificr developed formultifiequency polarimetric SAR data (Rignot
and Chellappa, 1992). The MAP classificr uodels the SAR amplitudes as circular
Gaussian distribution, which means that €t ral variations in radar back seatter from
surface are N ot considered to be significant enough to be incorporated into the
classification scheme. In this macthod, the a priori disuibution of ima ge classes is
modecled using a Markov 1andom ficld.  From the models of the a priori distnibution of
classes, a model for the a posteriori disuibution of the image classes is derived from the
SAR image using the Bayes' theoreni. The optimal image classification of the SAR data
is defined as the one that maximizes the a poster jori disuibution of classes and is called
the maximut w g posteriori estimate of the image classes.

The MAP mcthod 1S inherently di ffere nt and superior than the maximum
likelihood e¢stimation (MI1.E) procedure.  The classifies base.(i onthe maximum
likelihood methods view the parameter s (classes) as quantities whose values are {1 xed but
unknown and the best classification is defined to be the one that maximizes the
p robability of obtaining the samples actually observed (Dudaand Har(, 1973). The MAI
classifier views the. paramecters or classes as 1and om variables with some a priori
distiibution. Iterative observation of the feature $prace converts this to an a posteriori
density, thereby revising the decision about the true nature of classes. One of the
advantag ¢ of thistec hnique, be.side its mathematicaltigor, is the fact thatit is general
cnoug h and with minor modification Of the feature space can be applied 1o both optical
and SAR images and therefore cicating the opportunity for both y comparative and
synergistic studies.

A number of other classificrs are also available in the literature that have been
used successfully but with limited capability for generalization. At nong them, Ranson
and Suty (1994) used a combination of principle component analysis and Ml 1 to come
up with about 80% accuracy over Noi thern xperimental Forest near 1 Jowland, Maine.
Picrce et al. (1994) introduced a knowledge-based classifier overa test site in Nor thern
Michigan. This technique stong ly depends on the absolute backscatter values (ic.live.d
over training arcas and the text uie analysis. The use of this technique is dependent onthe
calibration of the airbor ne and spacebor ne pola imetr ic data which often suffe 1s from
clutter range and atmosph cric distor tons.  Moreover, the speckle filtering and
multilooking technique in polarimeteric SA R often degrades spatial resolution and
information conte nt (both in magnitude and phase) of the data, sometimes in a
nonuniform ma nner across the image and alters the textural infor mation. The refore,
segmentation of the polarimetric SAR data based on knowledge-based technique s appear®

(o be noisy and not typically suitable for practical applications.




The learning procedurcforthe classifier is super vised in the sensethatthe state of
the nature (class label) is known in advance and training areas are chosen based on a
priori knowledge of the scene 01 the visualinterpretation of the image. To implement
the MAP classifict over the SAR mosaic nnape we fust define the a priori distribution
of the SAR data for image classes by computing the aveage covariance matrix over the
single raining arca. We concentrated on & categories of training cover: 1) jack pine (JP),
2) black spruce (1] S), 3) tembling aspen/mixed (TA/MX), 4) mixed jack pine and aspen
(JP/T'A), 5) mixed black sp ruce and jack pine (BS/)P), 6) mixed stands (MX), 7) clear
cut, disturbed anti nonforest (CC), and 8) open watt.l (OW). For each category, we
selected a single large homogencous stand from the knowledge acquired from field
obscervations and the existing land-covermap. ‘Theaverage covartance in3[lices are
computed for all three frequencices. The use of limited number of training areas ensures a
realistic classification accuracy and the extrapolation of the 1es ults to the entire image.
1 lere, we used three trainingarcas for jack pine stand depending on the density and age,
two black spruce areas from a towet site and mature treed muskeg stand. Table 1, lists
the. calibrated radar back scatter ing coefficients, co-polarized phase difference in degrees,
and the cocfficient of correlationin the linca domain bet ween the complex amplitudes at
1111 and VV polatizations. The radar char acteristics are obtained from the frame images
p rocessed over 10 km x 10 km arcas within cach synoptic image. The forest stands
chosen for the training arcas were imaged at ne arly the samne incidence angle, typically
around 45° incidence angle, thereby the rada r pa ram cters for the image classes are
assu med to be independent of the incidence angle.  However, the SAR immage was
classifi ed over its entire angle variations and although the images were corrected for
incidence angle variation along the range line, we can still expect some misclassifaction,
particulaily near the arcas of overlap. Among the iaining areas, we encountered some
difficulty inidentifying aspen stands because of their small sires within the BOREAS
modeling gridand their vicinity to mixed stands. As aresult,aspen class is labeled

TA/MX in order to illustrate the aspen domi nated mixed stands.

RESULTS AND DISCUSSION

The map of fore.st typesusing the SAR datais showninYigure 4. This 1esult is
obtained using polarimetiic data at P-band and the 1111 and HYV polarizations atl.- and C-
bands. The choice of the frequency arid polarization channels for achievin g the optimum
classification 1esults was obtained by changing the dimentionality of the classification, o1

equivalently, reducing the nuinber of clements in the covariance matrix of each pixel that
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arc uscd for classification. Conscquently, the optimum classification accuracy was
obtained by only excluding 1.- and C-band VV polarizations. 1 this process, it was also
found that the contribution of P-band data was crucialin separating the classes. The
reason for this combination is partially due to the calibr ation and radiometiic inaccuracies
at higherfrequencies.  in particular, the. C-band VV-polarized synoptic mosaic data
suffered from banding in the image and inaccwacics resulted from incide nce angle
correction. in fact, when a radar channel does not separate two image classes, it adds as a
noise sourceto the classification, andincieasesthe classification probability of error.
The combination of polarizations and frequencies used to attain maximum seal ability
differs from a similar technique applied 011 AIRSAR frame images over Alaskan boreal
forest where the highest accuracy was obtained by only I.-band and C-band 1V
polarizations (Rignot et al., 1994). We belicve the reason for this differ ence resides in the
poor radiometric accuracy of the synoptic images at high fiequecies in our case, and in
the P-band interference problem in the data used over the Alaska region.

Classification accuracy for each class is determined by measuring the number of
pixcls correctly classified into the class divided by the total number of pixels in that class
and is illustrated inthe form of confusionmatiix. In assessing the total classification
accuracy we included open watt.r and clear cut, though they arc often separated with no
difficulty within SAR images. The contribution of each fiequency in the total
classification was assessed qualitatively whien the classifier results weire examined during
the dimentionality test. The results indicate that the 11V polarizations contribute the most
for forest type mapping at al frequencics.  As shown in Table 1, the 1V channels at 1 ,-
band and P-band snow the highest variability over the range of forestiypes since they are
mainly related to the volume scattering within forest canopy andinturn sensitive. to the
forestbiomass density. Furthermore, over forested areas the HV backscatter is less
se nsitive to the incidence angle variation and therefore, the channels are less
contaminated by the correction errors that may have remained over the image mosaic.
The co-p olarized back scatter are less variable over different stands, but since the
calibration of co-polarized channels are ustially better than the cross-polarized channels,
their roleinseparating classes is significant. For example, overlow vegetation, clear
cut, arid openwater, the HV-polarised backscatter is very low andtheco-polarized
backscatter signatures are the primary s ource for separ ating these classes.

Table 2 shows the confusion matiix computed from the results of MLE and MA]’
classifiers over the training arcas with 90 and 96 percent accuracies respectively.  For
mixed aspen and jack pine (JP/TA) class only 72% Of pixels over the training arca was

classified accurately. The reason for this IS the similaraverage co-polari zed backscatter
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values at all thiee bands. In gencral for mixed stands, the. choice of the training arcas are
poor compared with the mono-species homogenecous stands and as a result the mean
backscatter returns for these sites arc notver y distinctive.  Therefore, we expect poor
accuracics over TA/MX sites since oven this 1¢ gion, most of the aspen stands are mixed
with coni fer trees. Jack pine and black S yee stands are classified with 1 ()()% and 99%
accuracy respectively. P-bandand 1 - band HH polarizations are the main channels for
separating these two classes. In jack pine. stands, the trees arc taller with less foliage and
with dry and smooth ground surface. that collectively contribute 10 high double-bounce
returnat 1111 polarization (Moghaddamand Saatchi, 1995). The black sprucestands,on
the other hand, have shortertrees, more foliage, and thick and wet moss layer and thus
lower returns at HI1 polarization because of the absorption of the electromagnetic energy
by the underlying moss layer.

‘1’0 examine the ability of the classiher inseparating coniferous and deciduous
stands, we applied the classifier, withoutany changes inits current configuration, on an
Al RSAR frameimage acquired over the aspen tower site inthe Prince Albert National
Park onthe same date.. The image covers the arca south of | Talkett lake and north of dirt
road Rt. 240 and is centered at the aspen tower site at almost 45 incidence an gle. The
arca is covered mainly with aspen trees and with small scattered patches of balsam poplar
(I’opulus balsamifera) that are similar in stucture to aspen. The resultof the
classification is shown intigureS. Fromthe visualinterpretation of the map, it appears
that the classifier separatesthe aspen stands withno difficulty. Over the tower site, the
classification accuracy i1cached100%. ‘Thisis one of the. stiiking results of the SAR
classification bc.cause ingencral, the separation of coniferous and deciduous stands in
boreal forests in cc)rlsicte.reel one the most challenging problems in any land cover
classification. Thisresult also indicates that over homogencous stands, the. structural
information of the forest embeddedin the SAR backscatter data bc.comes one of the key
discriminatesin the forest type classification.

To analyze the accuracy of the SAR derived covermap further, we compared the
map with the field data and the existing laid cover map (ic.rived from the infrared aerial
photography.  ‘J able 3 shows the tree species composition of 19 test sites within the
modeling grid obtained from actual measureinents for each site, the vegetation map, and
the SAR map. The ground measurements were conducted during the intensive field
campaigns in summer of 1994 and coincide withthe time frame the SAR data were
acquired. The species composition were measured on small plots within cach stand and
was not designed to address the spccics composition a the SAR pixel scale.  The

vegetationmap is almost 1() years old and may be inaccurate because it is based on the
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visual interpretation of the aeria photography and dots notinclude the changes that had
occurred since then. 1lowever, Wc have. included the map as anextrasource for
evaluating the accuracy of the SAR map. Morcover, the classifier was used to label cach
pixel by the dominant forest type and was never intended to estimate the species
composition. Nevertheless, by performing this comparison, wc will be able to examine
the general performance of the classifier and the capability of SARto identify species
composition.

The SAR map was georeferenced and co-registered with the vegetation map with
Icssthanone pixel (30 m) accuracy. The center location of the sites were identified on
the images by using the GPS (Ground Positioning System) data. Stand compositions of
19 sites were computed over 5x5 pixels from SAR and vegetation maps. The resultsin
‘1’ able 3 indicate that classification of auxiliary sites and tower site.sarc in good agreement
with the field data anti the vegetation map. Over 13 forest stands, crrorsinpercentage of
each species represented inthe classification are less than 8%. The remaining 6 sites arc
mixed and containspecies that are not includedinthe SAR classification. Over these
sites the crrors in estimating species composition can increase to 20% with the exception
of the auxiliary site G413M where the crior exceeded 50%.  These errors stem {1 om
several factors: 1) the spatial variability of g])c.tics composition within the mixed stands is
not compatible with the pixelsize s of the SAR map, 2) the location of the sites on the
SAR map canbe wrong due to ¢ rrors inthe GPS measurements that may be larger than
100 m, arid 3) the number and size of plots usedin the ficld measurements may not be
adequate for the mixed stands. lurthermore, since a combination of tree. geometry,
biomass andsurface conditions contribute inchanges of SAR backscatter, the presence
of several tree specics within one SAR pixel will add to the confusion of the classifier in
scparating stands.  These results suggest that the SAR map can be used to determine the
species composition on the scale of SARimage data.  Given the fact that SAR
classification is performed by assuming thatthe training arcas arc purely single species
stands, wc expect the SAR dataf have betteraccuracy in mapping stand composition if the
training arcas were chosen differently.

Next, wc examine the accuracy of the SARmap over the entirte modeling, grid by
computing the percentarea covered by cach forest type inthe region.  Anarca of
approximately 25 km x 35 kmare taken from the middle of the SAR map arid the number
of pixcls of each forest type is counted and divided by the total number of pixels. in
‘1'able 4,the percent area covered by e type in SAR ma]) and vegetation covermapare
compared. The difference between the tWo maps represented by the percentage of change

imply a combination of errors inboth maps and changesinthe land cover between the
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time of thetwo data takes. if the vegetation covermap is considered accurate at the time
of the SAR datatake, then the difference can mean that 23% of the total arca has been
classified inaccurately. Iiicld observations during BOREAS campaigns showed that

certain parts of the land cover have been altered. For example,, some logged and burned
arca s have been forested and some forest areas have beenrecently cut. Since there is no
accurate information about the land covertypes on arcgional scale, the assessment of the
accuracy of the SAR map can be difficult. Given the uncertaintics in vegetation cover
map, we expect that on a regional scale, more than 77% of the total area can be classified
accurately with SAR imagery.

Process Modeling Requirements:

| and cover maps can be used as onc Of the parametric inputs to ecosystem process
models. The requirements for accuracy and spatial scale of the map depend on the
ecosystem model andthe application. Yorexample, genera] circulation models(GCM)
have incorporated al) by 1° globalland cover classification maps[Sellerset al., 1994].
Recently an AVHRR/NDVIbased global land cover map has also become available as an
input to GCMs (Delries and Townshend, 1994).  For modeling the net canopy
assimilation in boreal or tropical forest, ecosystem models may require much finer
resolution data over localor regional scales (Bonan,1993). The BOREAS p rocess
models require five major land cover types for the region. These are conifer- wet, conifer-
dry, deciduous, mixed conifer -deciduous, and fen and disturbed. As an attempt to
produce maps that can be readily used as input parameters to these models, wc combined
classes and modified the SAR and vegetation cover maps to represent these five classes.
Since over the modeling sub-grid mapped by SAR, pure deciduous ant] fen sites arc rare,
we have chosen cOnifer-wet, conifer-dry, mixed deciduous and conifer,
clearing/disturbed, and open water astypical cover types for the region. Thenew classes
are formed by grouping BS, BS/JP, and MX (mixed wet) into conifer-wet, JP in conifer-
dry, TA/MX, JP/T'A into mixed conifer-deciduous class. The clear cutand disturbed and
open watt.r classes arcnotchanged. Theesultsare shown inkFigure 6. By preserving
the original pixelsize (30 m), the new maps can be used in future for the accurate
estimation of land usc change due to environmental and anthropogenic forces. The
modified SAR and vegctation cover maps show sirnilar patterns of land cover types in the
region. A comparison of the two images over a25km X 35 kmsub-area is given in
Table 5. Results indicate that the accuracy of the SAR image canimprove when fewer
classes arc. used. The difference between the two maps hasreduced to only 7.3%% of the
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total arca. This means that by reducing the number of classes to functionally significant
land cover types, SAR data can provide maps with greater, 92% accuracy over the

modeling grid.

SUMMARY AND CX)NCI.1JS1IONS

This work summarizes the approach and the results of mapping forest typesin the
southern study arca of the BOREAS project in the boreal forest of Canada by using SAR
imagery. Theimages arc collected by the airborne J1'1, AIRSAR system and combined in
a mosaic to cover the ecosystem process modeling sub-grid. Eight classes have been
separated in the SAR image and the accuracy of the classification of have, been performed
at severa levels. Overl19forest stands surveyed during the BOREAS field campaigns,
the SAR map exhibited an accuracy of about90%. The analysis showed thatthe map
was also able to correctly predict tree species composition on the SAR pixel scale. At a
larger scale., an area of 25 km x 35 km from the SAR map was compared with a digital
vegetation map based on the infrared aerial photography andmore than 77% of the. total
arca was classified accurately. linally, the number of classes were reduced to produce a
map compatible with the requirements of the BOREAS land surface process models. The
reduced map had 5 classes and when compared with the vegetation map, showed similar
land cover patterns with greater than 92.% accuracy over the total area.lt is important
to note that the classification accuracies pc.l-formed in (his study were highly dependent
on the accuracy of the image calibration and impediments caused by errorsduecto
incidence angle cffects aircraft motion compensation, and the image mosaic procedure.
IYurthermore, the results were obtained by using data from a single date. h411]ti-temporal
data can provide information aboutthe seasonal and environmental states of the boreal
forest andenhance the characteristics of the feature space for the classifier. Therefore,
wc believe that the accuracy obtainedinthisstudy is conservative andcanbe improved
by incorporating multi-temporal data, andspaceborne systems with better image fidelity.

Some of the important results of the SAR classification were the separation of
black spruceand jack pine stands and the coniferous and deciduous trees with close to
100% accuracy. These forest types are considered the dominant coniferous and
deciduous stands covering large patches throughout the entire reg ion Of the boreal forest.
The results have also a significant impact on modeling the canopy assimilation and
biogecochemical processes for the region.  Deciduous trees, because of their phenological,
understory, and scasonal characteristics than conifers, representdifferent functional formss

in ccosystem proces s models. Among conifer s, jack pine and black spruce trees arc also
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treated differently in process models.  Unlike dry and sandy soils of jack pine stands,
black SPruce patches are often covered with thick moss layer©ver poorly drained soils
and with different characteristicsin the release of the trace £45¢ s from the soil surface and

canopy.
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Iigurc Captions
Fig. 1. Map of the BOREAS southern study arca and the modeling sub-grid.

Iig. 2. Digital vegeta tion map of the modeling sub-grid assembled from visual
interpretation of infrared aerial photography. The map includes 8 different types of land
cover which are regrouped from aborigina 40 land cover |asses.

Fig.3. P-band polarimetric color overlay of the AIRSAR mosaic image of the modeling
sub-grid within the BOREAS southern study area acquired on July 21, 1994. P-band 11,
HV, and VV polarizations are respectively colored in red, green, and blue. The mosaic
image is co-registered with the digital vegetation map and georeferenced to U'TM
coordinates with North being parallcl to the side of the image.

Fig. 4. Map of forest types obtained from 1’- band polarimetric, 1.- ant] C-band H} 1 and

1 IV polarizations. The map includes 8§ classes similar to Fig. 2. The classesarc JP ( jack
pine), BS (black spruce), JP/I'A (dominant jack pine mixed with trembling aspen) BS/JP(
dominant black spruce mix d with jack pinc), TA/MX (dominant trembling aspen mixed
with other conifers), MX (mixed conifer), CC (clear cut, bogs, and disturbed), OW (open
water).

Fig. 5. Map of forest types obtained over the aspen tower site in the Prince Albert
National Park. The map was obtained from a frame image covering an area of
approximately 10 x 10 km. The cover types arc similar to ig. 4. with aspen being
separated from other land cover types,

Fig. 6. (@) Reduced SAR map over the modeling sub-grid derived from the original SAR
map shown in Fig. 4. The map includes 5 classes of conifer-wet, conifer-dry, mixed
deciduous and conifer, clear cut, and open water. (b) Reduced digital vegetation map
derived from the original vegetation map by regrouping the land cover classes.
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Table 1. Radar characteristics of the training sites of forest type classes at P-, 1.-, and C-
band frequencies on July 21, 1995. ofn is thebackscat tering coefficient at pq
polarization averaged over the number of pixels within each training site and
¢ and p are the phase diffcrence in degrees and [he coefficient of correlation of
hh and vv polarizations respectively.

Frequency o o' | o ¢ P pixels Class

P-band -1.13 | -1240[ -374 69 0.48 | 2814 P
-7.02 | -14.651 -6.21 28 037 | 1097 BS
-480 |-13.99 ] -8.24 78 025 | 4920 | TA/MX
-6.66 |-17.14 | -5.75 51 | 0.24 1883 JP/TA
-1.28 | -12.33| -0.44 64 [0.46 1850 MX
-6.25 | -1428 | -6.58 36 0.20 2006 BS/IP

1024 |-2269|-1478 [ 8 | 0.36 | 1097 CC
-15.26 | 2771|1435 | " 19" | 035 | 286 oW
Frequency | 50 0! o° o p pixels Class
I-band | -1.80 |-12.35| -6.49 | 120 |7 041 | 2814 JP
573 |-1362 | 675 | 23 | 036 | 1097 BS

-6.69 [-1216| -741 | _32 | 014 | 4920 | TA/MX
-5.87 | -1547 |1 -7.39 | 49 [T 030 | 1883 | JP/TA
-250 |-1083 | -4.01 94 026 | 1850 MX

-5.07 1-1323] -7.83 63 | 0.16 | 2006 BS/IP

i 920 | -20.321-12.60 | -19 | 0.44 1097 ccC
L -20.21 | -29.77 | ~16.54 2 0.48 286 oW
Frequency o’ o’ 0 ¢ P pixels Class

C-band | -6.47 | -IR(IB| -&56 47 |7032 | 2814 TP
-5.24 | -13.05 | -7.36 15— [ 0.47 | 1097 BS
713 |-1284 | -6.38 57 0047 | 4920 | TA/MX
- -5.98 |-13.59 |-9016 1_ [~-0.35 | 1883 P/ TA
448 | -12060°-708 |~ 15 032 | 1850 MX
5.74 | -12.88 | -7124 127 048 | 2006 BS/IP
== -8.69 [-183%8 |-1i50 | 17.5 | 058 | 1097 CC
= [-22.70 | 29789 -21.19| 10 0.34 286 ow




‘1'able 2. Confusion matrices of forest types derived from MLE and MAP classifiers. The
diagonal elements of confusion matrices define the percentage of those. pixels

that has been classified into the correct class.

@ Maximum Likelihood Classifier

Specics | JP BS [TAMX[ I'AF [ MX [ BSAP | CC [ OW
Jp 98 0 ] 0 1 0 0 [0 _
BS 0 95 0 4 0 i 0o [ o

TAMX |- 0 U 98 | _ 1 1 U 0 0

JPfTA |- 1 26 ) 58 0 13 0 0
MX 6 0 0 =) 94 0 0 0

BS/Ip 0 13 |—3 1 0 82 0 0
CC |- O 0 0 0 0 0 100 | ()
OW |- o 0 0 0 0 0 2 _ 98

b) Maximum-a-p osteriori Classifier

Species JP BS TAMX | TAAP]  MX BSAP | CC [
P 100 0 |© o 0 0 0 0 0
BS 0 99 o _| T 0 1 0 0

TA/MX |- 0”7 0 100 | 0 U 0 U U

P/ TA 0 20 0 2 0 7 0 0
MX [ o 0 o “| 0 100 0 0 0

BS/IP 0 0 0 0 0 100 0 0
CC 0 0 0 0 0 0 100 0
oW 0 0 0 B¢ 0 0 2 08




Table 3. Treespecies composition of 19 forest stands in the modeling sub-grid area. The ground truth data was taken
from the ield notes of TE-6 investigators (Sellers. etal. 1995y ws js white soruce (Picea glauca) . Lala is
Larix laricina, Abba id Balsam Fir (Abies balsamea), Bepa is paper birch (Belula papyrifera). Numbers in
ground truth column indicate the percentage of each tree species based on the number of stems within the test
piots. In vegetation cover and SAR maps. the numbers indicate the percentage of image pixels of each stand

classified in type of forest.

Site Stand Composition 1 Stand Composition 2 Stand  Composition
(Ground Truth) % (Cover Map) % (SAR Map) % |

G2L7S| BS: 40, Lala: 60 BS: 99.JP/BS: 1 BS: 64. MX: 36 )
GOI4S BS99, Salix: | BS: 100 BS: 100 ';
G214S BS. 92, TA: 2. Salix: 2, Bepa:3 BS: 100 BS: 96, JP: 4 '
GOKES [BS 94, lala: 6 BS: 100 BS: 100 i
(EINOM TAITLWS: 25, Abba: 3 TA/JP:92, BS: § [ TA/MX: 96, JP:4 |
GRL6P| JP. 91, TA: 9 JP/TA: 100 {JP: 76, IP/TA:S, BS/JP: 16 |
F5I6P [ JP:100 JP: 100 1 J?2 92, TA/MX:¥ '
GOLOP JP: 100 JP: 100 { JP: 100 ,
F7I0P JP: 17, WS:4,BS: 74, TA: 4 BS: 100 | BS: 96. JP: 4 )
F7J1P JP: 59, BS: 17, TA: 23 [JP/TA: 72, TA: 16.BS:12 PP 60, TA/MX: 24, MX:16 )
G4AREP + JP: 100 (P 100 (P 100

GIK9P [IP: 100 JP: 100 ' JP: 96, BS/JP: 4

G7K8P  [JP: 100 JP: 100 JP. 100

G4I3M | TA: 49, WS: 43, Bepa: 6, Abba: 3 | TA/WS: 96, WS/TA: 4 TA/MX:20,BS/JP: 68, JP: 12
TE-OBS [BS 100 BS: 100 BS: 100

TE-OJP | JP: 100 JP: 100 JP: 100

TE-YJP | JP:. 100 JP: 84, JP/TA: 16 JP: 64, JP/TA: 36

ADM-3 TA/JP: 92, JP/TA:8 TA/MX:92. JP/TA:§

BDH-4 JP/TA:76, BS:24 TA/MX: 20, JP/TA: 68, MX:12




Table 4. Area percentage of land cover t ypes over 875 km? of modeling sub-grid derived
from original SAR and vegetaion cover maps. The change shows the percentage
of difference of SAR map in arcas of land cover types from the cover map.

Cover type SARMap % Cover Ma % Chan e %
JP 18.26 17.73 + 0.53
BS 30.27 37779 - 7.52
TA/MX 8.17 7.86 -t 0.31
JP/TA 5.73 10.01 - 4.28
MX 16.36 — 8.39 + 7.97
BS/IP 1557 1291 _ + 2.66
___ Cc 3.62 _ 339 -().23
oW 123 F sy 7z 036 =

'Table 5. Areapercentage of land cover types over 875 km? of modeling sub-grid derived
from reduced SAR and vegetaion cover maps.

Cover Type | SARMap% | Cover Maj % Change %
Conifer-Wet 62.22 — 59.34 4 2.88
Conifer-Dry 18.27 17.73 + 0.54
Deciduous/ConiTer | 13.91 17.22 - 3.31
Disturbed/Bog 3.62 3.39 +0.23
Open W ater 1.23 1.59 -0.36
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